Effects of carriage and expression of the Tn10 tetracycline-resistance operon on the fitness of Escherichia coli K12.
نویسندگان
چکیده
We have been examining the consequences of alternative modes of regulation of plasmid-borne, Tn10-encoded tetracycline resistance for the fitness of Escherichia coli. In a tetracycline-free environment, we measured the effects on fitness that were caused by (1) maximally induced expression of the resistance operon, (2) low-level constitutive expression of the resistance protein, (3) residual expression of the repressed resistance operon, (4) carriage of the resistance operon, (5) the remainder of the plasmid genome, and (6) hyperexpression of the repressor protein. We observed large reductions in fitness that were associated with induction and with constitutive expression of the tetracycline-resistance protein, but there was no discernible effect of hyperexpression of the repressor protein. We also observed a small reduction in fitness associated with the remainder of the plasmid genome. However, any reductions in fitness that were caused by residual expression and by carriage of the repressed operon were not more than 0.3%. We conclude that tight gene regulation has eliminated antagonistic pleiotropic effects of the resistance gene on fitness, so that possession of an inducible Tn10-encoded tetracycline-resistance operon imposes essentially no burden in the absence of antibiotic.
منابع مشابه
Properties of the translocatable tetracycline-resistance element Tn10 in Escherichia coli and bacteriophage lambda.
A number of independent insertions into bacteriophage lambda of the translocatable tetracycline-resistance element Tn10 have been isolated and characterized. The physical positions and relative orientations of several such insertions were determined. Two independent insertions appear to lie in the same orientation at or very near the same site in the cI gene, and two more lie in opposite orient...
متن کاملLocating essential Escherichia coli genes by using mini-Tn10 transposons: the pdxJ operon.
The mini-Tn10 transposon (delta 16 delta 17Tn10) confers tetracycline resistance. When inserted between a gene and its promoter, it blocks transcription and prevents expression of that gene. Tetracycline in the medium induces divergent transcription of the tetA and tetR genes within the transposon, and this transcription extends beyond the transposon in both directions into the bacterial genes....
متن کاملStudy of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants
Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...
متن کاملStudy of Organic Solvent Tolerance and Increased Antibiotic Resistance Properties in E. coli gyrA Mutants
Ciprofloxacin is one of the most widely used antibiotics for the treatment of several infections caused by Gram-negative bacteria, like E. coli. Changes in gyrA, encoding GyrA subunit of DNA gyrase, cause the resistance to ciprofloxacin. Some ciprofloxacin resistant gyrA mutants acquired constitutive expression of marRAB operon due to the gaining mutations in marR, a repressor of this operon...
متن کاملExpression of acrA and acrB Genes in Esherichia coli Mutants with or without marR or acrR Mutations
Objective(s): The major antibiotic efflux pump of Esherichia coli is AcrAB-TolC. The first part of the pump, AcrAB, is encoded by acrAB operon. The expression of this operon can be kept elevated by overexpression of an activator, MarA following inactivation of MarR and AcrR repressors due to mutation in encoding genes, marR and acrR, respectively. The aims of this research were to us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 6 3 شماره
صفحات -
تاریخ انتشار 1989